Bem-Vindos Alunos!

Estudem Os nossos Conteúdos

terça-feira, 5 de julho de 2011

CAMADA DE VALÊNCIA:


É a última camada da eletrosfera com elétrons. Ela define o "comportamento" de átomo a partir da quantidade de elétrons que apresenta. Porque, naturalmente, os átomos ficam equilibrados, estáveis, quando possuem 8 elétrons na Camada de Valência (ou 2 para as camadas K e Q). Caso isso não ocorra, os átomos passam a ficar instáveis eletronicamente e a estabelecer ligações com outros até alcançarem a estabilidade. Átomos que já apresentam 8 elétrons na Camada de Valência.

LIGAÇÕES QUÍMICAS


Como está escrito antes, se os átomos têm menos que 8 elétrons na Camda de Valência, eles fazem ligações para alcançarem a estabilidade. Existem vários tipos de ligações, mas no momento, as importantes são duas, a ligação iônica e a covalente. A Ligação Iônica é, basicamente, quando um átomo "doa" uma quantidade de elétrons da Camada de Valência para outro átomo, de modo que ele vire um cátion (átomo com carga elétrica positiva, que acontece quando o átomo tem mais prótons do que elétrons) e o que recebeu vira um ânion (átomo com carga elétrica negativa, que ocorre caso existam mais elétrons do que prótons). Claro, esta ligação só ocorre quando a camada anterior a Camada de Valência (do átomo que doou o elétron) tiver 8 elétrons (ou 2, para as camadas K e Q). A outra ligação, a Ligação Covalente é bem diferente. Ao invés de doar o elétron, os átomos compartilham, de modo que ambos alcancem a estabilidade. A substância da água é exatamente assim: dois átomos de hidrogênio compartilham seus elétrons com o átomo de oxigênio, que, ao compartilhar um elétron com cada átomo de hidrogênio, faz com que os três alcancem a estabilidade.


http://apoio-forum.forumeiros.com/t8-quimica-camada-de-valencia-e-ligacoes-quimicas


Daniela Ferreira 
O Átomo

Todas as substâncias são formadas de pequenas partículas chamadas átomos. Para se ter uma idéia, eles são tão pequenos que uma cabeça de alfinete pode conter 60 milhões deles.

Os gregos antigos foram os primeiros a saber que a matéria é formada por tais partículas, as quais chamaram átomo, que significa indivisível. Os átomos porém são compostos de partículas menores: os prótons, os nêutrons e os elétrons. No átomo, os elétrons orbitam no núcleo, que contém prótons e nêutrons.

Elétrons são minúsculas partículas que vagueiam aleatoriamente ao redor do núcleo central do átomo, sua massa é cerca de 1840 vezes menor que a do Núcleo. Prótons e nêutrons são as partículas localizadas no interior do núcleo, elas contém a maior parte da massa do átomo.




O Interior do Átomo

No centro de um átomo está o seu núcleo, que apesar de pequeno, contém quase toda a massa do átomo. Os prótons e os nêutrons são as partículas nele encontradas, cada um com uma massa atômica unitária.

O Número de prótons no núcleo estabelece o número atômico do elemento químico e, o número de prótons somado ao número de nêutrons é o número de massa atômica. Os elétrons ficam fora do núcleo e tem pequena massa.

Há no máximo sete camadas em torno do núcleo e nelas estão os elétrons que orbitam o núcleo. Cada camada pode conter um número limitado de elétrons fixado em 8 elétrons por camada.




Características das Partículas:

Prótons: tem carga elétrica positiva e uma massa unitária.
Nêutrons: não tem carga elétrica mas tem massa unitária.
Elétrons: tem carga elétrica negativa e quase não possuem massa.

O átomo é a menor partícula que ainda caracteriza um elemento químico. Ele apresenta um núcleo com carga positiva (Z é a quantidade de prótons e "E" a carga elementar) que apresenta quase toda sua massa (mais que 99,9%) e Z elétrons determinando o seu tamanho.[1] Até fins do século XIX, era considerado a menor porção em que se poderia dividir a matéria. Mas nas duas últimas décadas daquele século, as descobertas do próton e do elétron revelaram o equívoco dessa ideia. Posteriormente, o reconhecimento do nêutron e de outras partículas subatômicas reforçou a necessidade de revisão do conceito de átomo.

O átomo é a menor partícula que ainda caracteriza um elemento químico. Ele apresenta um núcleo com carga positiva (Z é a quantidade de prótons e "E" a carga elementar) que apresenta quase toda sua massa (mais que 99,9%) e Z elétrons determinando o seu tamanho.[1]
Até fins do século XIX, era considerado a menor porção em que se poderia dividir a matéria. Mas nas duas últimas décadas daquele século, as descobertas do próton e do elétron revelaram o equívoco dessa ideia. Posteriormente, o reconhecimento do nêutron e de outras partículas subatômicas reforçou a necessidade de revisão do conceito de átomo.

Os cientistas, por meio de técnicas avançadas, já perceberam a complexidade do átomo. Já comprovaram a presença de inúmeras partículas em sua constituição e desvendaram o comportamento dessas partículas. Mas para construir alguns conceitos que ajudam a entender a química do dia-a-dia, o modelo de átomo descrito por Rutherford-Bohr é suficiente. Na constituição dos átomos predominam os espaços vazios. O núcleo, extremamente pequeno, é constituído por prótons e nêutrons. Em torno dele, constituindo a eletrosfera, giram os elétrons.
O diâmetro da eletrosfera de um átomo é de 10,000 a 100,000 vezes maior que o diâmetro de seu núcleo, e sua estrutura interna pode ser considerada , para efeitos práticos, oca; pois para encher todo este espaço vazio de prótons e nêutrons (ou núcleos) necessitaríamos de um bilhão de milhões de núcleos…
O átomo de hidrogênio é constituído por um só próton com um só elétron girando ao seu redor. O hidrogênio é o único elemento cujo átomo pode não possuir nêutrons.
O elétron e o próton possuem a mesma carga, porém não a mesma massa. O próton é 1836,11 vezes mais massivo que o elétron. Usando, como exemplo hipotético, um átomo de vinte prótons e vinte nêutrons em seu núcleo, e este estando em equilíbrio eletrodinâmico, terá vinte elétrons orbitando em suas camadas exteriores. Sua carga elétrica estará em perfeito equilíbrio eletrodinâmico, porém 99,97% de sua massa encontrar-se-á no núcleo. Apesar do núcleo conter praticamente toda a massa, seu volume em relação ao tamanho do átomo e de seus orbitais é minúsculo. O núcleo atômico mede em torno de 10 - 13 (1 fm) centímetros de diâmetro, enquanto que o átomo mede cerca de 10 − 8 centímetros (100 pms). ALUNOS: Rebeka David e Duda
Energia Nuclear

Dentre as principais formas de produção de energia elétrica no mundo, a energia nuclear é responsável por cerca de 16% desta eletricidade. Entretanto, há alguns países com maior dependência da energia nuclear: enquanto no Brasil, por exemplo, apenas 3% da eletricidade utilizada é produzida pelas usinas nucleares, na França 78% da energia elétrica é gerada por elas (dados de 2008).

Nos Estados Unidos há mais de 100 usinas nucleares, embora alguns estados utilizem mais este tipo de energia do que outros; enquanto no Brasil temos em funcionamento apenas duas: Angra 1 e Angra 2, estando uma terceira (Angra 3) em fase de instalação, todas constituintes da Central Nuclear Almirante Álvaro Alberto.

A pergunta principal é: como funcionam as usinas nucleares?

Para começar, é importante definir o que é energia nuclear. Trata-se da energia liberada na transformação de núcleos atômicos. Basicamente, o que ocorre é a transformação de um núcleo atômico em vários outros núcleos mais leves, ou ainda, em isótopos do mesmo elemento.

As fissões nucleares, reações que consistem na quebra de um núcleo mais pesado em outros menores e mais leves após a colisão de um nêutron no núcleo inicial, são a base para a produção de energia nas usinas nucleares.

Assim, sendo o urânio um elemento bastante disponível na Terra, é o principal recurso utilizado nas reações nucleares destas usinas. O urânio 238 (U-238), por exemplo, que tem meia-vida de 4,5 bilhões de anos, compõe 99% do urânio do planeta; já o urânio 235 (U-235) compõe apenas 0,7% do urânio remanescente e o urânio 234 (U-234), ainda mais raro, é formado pelo decaimento de U-238.

Apesar de menos abundante, o U-235 possui uma propriedade interessante que o torna útil tanto na produção de energia quanto na produção de bombas nucleares: ele decai naturalmente, como o U-238, por radiação alfa e também sofre fissão espontânea em um pequeno intervalo de tempo. No entanto, o U-235 é um elemento que pode sofrer fissão induzida, o que significa que, se um nêutron livre atravessar seu núcleo, ele será instantamente absorvido, tornando-se instável e dividindo-se.

Consideremos, então, um nêutron que se aproxima de um núcleo de U-235. Ao capturar o nêutron, o núcleo se divide em dois átomos mais leves e arremessa de dois a três nêutrons - este número depende da forma como o urânio se dividiu. Os dois novos átomos formados emitem radiação gama de acordo com o modo que se ajustam em seus novos estados.





by:Izabella Barreto, Maria Victória e George Almeida

Moléculas

Uma vez partilhados eletronicamente os átomos podem possuir entre si uma ligação tão forte que para separá-los é necessária uma quantidade razoável de energia, portanto, permanecem juntos. Estas combinações são chamadas de moléculas, nome derivado do latim que significa pequeno objeto.
Nem sempre dois átomos em contato são suficientes para ter estabilidade, havendo necessidade de uma combinação maior para tê-la.
Para formar uma molécula de hidrogênio são necessários dois átomos deste elemento, uma molécula de oxigênio, necessita de dois átomos de oxigênio, e assim sucessivamente.
Para a formação de uma molécula de água são necessários dois átomos de hidrogênio e um de oxigênio; metano, necessita de um átomo de carbono e quatro de hidrogênio; dióxido de carbono (bióxido), um carbono, e dois oxigênios e assim sucessivamente.
Existem casos de moléculas serem formadas por uma grande quantidade de átomos, são as chamadas macromoléculas. Isto ocorre principalmente com compostos de carbono, pois o átomo de carbono pode partilhar elétrons com até quatro elementos diferentes simultaneamente. Logo, pode ser possível a constituição de cadeias, anéis, e ligações entre estas moléculas longas, que são a base da chamada química orgânica.
Essa é a base das moléculas que caracterizam o tecido vivo, ou seja, a base da vida. Quanto maior a molécula e menos uniforme a distribuição de sua carga elétrica, mais provável será a reunião de muitas moléculas e a formação de substâncias líquidas ou sólidas. Os sólidos são mantidos fortemente coesos pelas interações eletromagnéticas dos elétrons e prótons e entre átomos diferentes e entre moléculas diferentes.
Em algumas ligações atômicas onde os elétrons podem ser transferidos formam-se os chamados cristais (substâncias iônicas). Nestes, os átomos podem estar ligados em muitos milhões, formando padrões de grande uniformidade. No átomo, sua interação nuclear diminui à medida que aumenta a distância. As moléculas da água por exemplo são chamadas de aguacormicas.

Postado por : Renan , João Paulo , Maury 

gravidade zero

Gravidade Zero
  É possível respirar em gravidade zero, ou quase zero. É o que acontece em naves com vôo tripulado, onde a cabine é pressurizada, ou seja, tem ar lá dentro, embora a gravidade local seja muito baixa ou até mesmo nula.

Não é possível criar, aqui na Terra, um ambiente sem gravidade. Pode-se, no entanto, simular a imponderabilidade (sensação de ausência de gravidade). Isto normalmente é feito com grandes aviões de carga que descrevem uma certa trajetória circular de grande raio, de tal forma que a aceleração centrípeta do avião se iguale com a aceleração da gravidade local. Quem está dentro do avião (os astronautas em treino, por exemplo), têm a sensação de ausência da gravidade. É só a sensação, pois na verdade há gravidade.

Os astronautas que estão na estação espacial internacional na órbita da Terra, neste momento, têm a sensação de ausência de gravidade, embora lá exista gravidade, de menor intensidade do que a da superfície da Terra, mas têm.
  A Nasa também treina seus astronautas numa enorme piscina (a maior do mundo, em volume), para que os astronautas tenham uma sensação de ausência de peso, devido ao empuxo da água. J

 Sávio 
Fillipe
Carlos Alexandre

Atómo

O átomo é a menor partícula que ainda caracteriza um elemento químico. Ele apresenta um núcleo com carga positiva (Z é a quantidade de prótons e "E" a carga elementar) que apresenta quase toda sua massa (mais que 99,9%) e Z elétrons determinando o seu tamanho.http://pt.wikipedia.org/wiki/%C3%81tomo
Até fins do século XIX, era considerado a menor porção em que se poderia dividir a matéria. Mas nas duas últimas décadas daquele século, as descobertas do próton e do elétron revelaram o equívoco dessa ideia. Posteriormente, o reconhecimento do nêutron e de outras partículas subatômicas reforçou a necessidade de revisão do conceito de átomo.

Postado por:  Renan, João Paulo , Maury